
Ansible

Ansible Homepage | Ansible Documentation | jamlab-ansible | Jeff Geerling's Ansible Guide |

Fast Ansible Guide

Ansible is a software tool that provides simple but powerful automation for cross-platform

computer support. It is primarily intended for IT professionals, who use it for application

deployment, updates on workstations and servers, cloud provisioning, configuration

management, intra-service orchestration, and nearly anything a systems administrator

does on a weekly or daily basis. Ansible doesn't depend on agent software and has no

additional security infrastructure, so it's easy to deploy.

For the best guide for deep diving into using Ansible check out Jeff Geerling's Ansible Guide

if you like video format or Fast Ansible Guide if you prefer text.

For configuration management it made sense to go with something simple to ease

bootstrapping and favoring mutability for fastest development. Running a whole platform

like Puppet did not make sense because of bootstrapping and resource overhead. Ansible

is simple to write, understand and manage if written well from the get-go. I also tried

SaltStack, but in the end it had too many shortcomings, check out the conclusions of the

Ansible User's Guide to Saltstack page.

Also knowing Ansible I knew how slow it can be. There's two ways of solving this: using

push mode with a central management (with homebrew solutions or AWX/Ansible Tower)

with parallel playbook execution for each host OR pull mode where each host essentially

configures itself. Running AWX/Ansible Tower has the same problem of bootstrapping and

resource overhead. Homebrew parallel push system spikes the central management

resource usage when executed and requires you to be on two hosts (central management

host and the host being configured) when developing. It is quite evident that pull mode is

the more scalable, resource efficient and easier for swift changes, although because of it's

outside-in nature it is less secure. I've tried and used both, but went back to push mode

using ansible-parallel.

I settled on the following requirements:

Info

https://www.ansible.com/
https://docs.ansible.com/
https://github.com/JamFox/jamlab-ansible
https://www.jeffgeerling.com/blog/2020/ansible-101-jeff-geerling-youtube-streaming-series
https://github.com/omerbsezer/Fast-Ansible
https://docs.ansible.com/ansible/latest/index.html
https://www.jeffgeerling.com/blog/2020/ansible-101-jeff-geerling-youtube-streaming-series
https://github.com/omerbsezer/Fast-Ansible
https://docs.jamfox.dev/content/devops/saltstack-for-ansible/
https://github.com/JamFox/ansible-parallel

Easy to bootstrap (i.e. couple of commands excluding secrets)

Scalable (execution time does not depend on the number of hosts)

Simple to modify and manage (DRY monorepo for all hosts)

No single point of failure in the form of a centralized configuration bastion

The solution was jamlab-ansible: Homelab push-mode configuration management with

Ansible.

Ansible Best Practices

Idempotency

The most important thing about using Ansible is that all tasks should be idempotent. It

means that each time any task is run, the result of it should be the same regardless of any

state on the machine it is run on. For example if you want to install some package on a

host with ansible and use the ansible.builtin.shell module for it with some command.

Maybe it will succeed the first time but give an error when the package is already

installed.

Instead of ansible.builtin.shell module we should use purpose built Ansible modules if they

exist since they will make sure that the result is idempotent. However you can make shell

tasks idempotent as well with some workarounds. For example consider the following very

common trick of registering outputs from tasks:

YAML

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

https://github.com/JamFox/jamlab-ansible

Readability

The second most important thing about using Ansible is always being explicit. For example

when using modules, it is better to write "ansible.builtin.shell" instead of "shell". That is

because external modules and community modules can also be used, but it should be

obvious which module is used.

171819202122232425
First we check if a directory for CNI exists.

- name: Check if cni exists

ansible.builtin.stat:

path: /opt/cni/bin/bridge

register: r_cni # Then we register the output of this task

in a variable called "r_cni" (using r_ prefix is an old

convention)

Check if newer CNI exists IF the directory in the last

task did exist, check "when" key at the bottom of this task

- name: Check if newer cni exists

ansible.builtin.shell: |

latest_tag=$(curl -s

https://api.github.com/repos/containernetworking/plugins/releas

| jq -r ".tag_name")

current_ver=$(/opt/cni/bin/bridge 2>&1 | cut -d " " -f

4)

case "$current_ver" in ${latest_tag}) echo "latest";;

*) echo "outdated";; esac

register: r_cni_ver # We register the output of our commands

which in this case is either "lastest" or "outdated" we will

use this for handling the cases in the next task

when: r_cni.stat.exists # We only run this task if the

output of the last task says that the directory did exist

Get the latest CNI if the output of the last task was not

"latest", check "when" key at the bottom of this task

- name: Get latest cni

ansible.builtin.shell: |

latest_tag=$(curl -s

https://api.github.com/repos/containernetworking/plugins/releas

| jq -r ".tag_name")

latest_url=https://github.com/containernetworking/plugins/relea

plugins-linux-amd64-${latest_tag}.tgz

wget -P /tmp $latest_url

mkdir -p /opt/cni/bin

tar -C /opt/cni/bin -xzf /tmp/"${latest_url##*/}"

rm /tmp/"${latest_url##*/}"

when: not r_cni.stat.exists or r_cni_ver.stdout != "latest"

We run this task if CNI directory does not exist or when

the output of the last task was not "latest"

Also it should be immediately obvious where variables come from and what is the variable

override precedence. This why it is not native behavior in Ansible to combine dicts and

lists from different "variables" or "defaults" files. Instead the variables will follow a

precedence and overwrite the one before it. Usually this follows the pattern of (weakest to

strongest precedence): global variables, group variables, host variables. So a list from

global variables will be overwritten if a list with same name exists in host variables for

example.

Jamlab Ansible Architecture

And as per Ansible's own best practices: complexity kills productivity. And I think that a

typical ansible monorepo is a bit too complex and usually it is not immediately obvious

what goes where.

A typical ansible management repository loops something like the examples from the old

best practices doc of Ansible:

Bash

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

https://www.ansible.com/blog/ansible-best-practices-essentials
https://docs.ansible.com/ansible/2.3/playbooks_best_practices.html
https://docs.ansible.com/ansible/2.3/playbooks_best_practices.html

282930313233343536373839404142

In this structure, each root playbook including the master playbook (site.yml in this case)

is defined in the project root directory and imports roles from roles/ , variables from

group_vars/ and host_vars/ . Then the master playbook runs all the other playbooks that

define which roles are run on which hosts or host groups. This introduces a problem where

production # inventory file for production servers

staging # inventory file for staging environment

group_vars/

group1 # here we assign variables to particular groups

group2 # ""

host_vars/

hostname1 # if systems need specific variables, put them here

hostname2 # ""

library/ # if any custom modules, put them here (optional)

module_utils/ # if any custom module_utils to support modules, put

them here (optional)

filter_plugins/ # if any custom filter plugins, put them here

(optional)

site.yml # master playbook

webservers.yml # playbook for webserver tier

dbservers.yml # playbook for dbserver tier

roles/

common/ # this hierarchy represents a "role"

tasks/ #

main.yml # <-- tasks file can include smaller files if

warranted

handlers/ #

main.yml # <-- handlers file

templates/ # <-- files for use with the template resource

ntp.conf.j2 # <------- templates end in .j2

files/ #

bar.txt # <-- files for use with the copy resource

foo.sh # <-- script files for use with the script resource

vars/ #

main.yml # <-- variables associated with this role

defaults/ #

main.yml # <-- default lower priority variables for this role

meta/ #

main.yml # <-- role dependencies

library/ # roles can also include custom modules

module_utils/ # roles can also include custom module_utils

lookup_plugins/ # or other types of plugins, like lookup in this case

webtier/ # same kind of structure as "common" was above, done

for the webtier role

monitoring/ # ""

fooapp/ # ""

a breaking change in one role will halt the whole run. Also, even with well organized root

playbooks, it is never immediately obvious which roles are defined for which root

playbooks especially if using hosts in multiple groups or child/parent groups. Furthermore,

the root playbooks, group_vars/ and host_vars/ are in separate directories which is not a

huge deal, but this does require one to verify that root playbooks, variables and roles

match when planning changes. This requires extra time of getting familiar with what-goes-

where especially when doing changes after a long time. For larger projects usually the

roles are managed in and imported from separate repositories. It is a great approach,

especially for running tests on the roles. However this increases the time of understanding

what-goes-where.

These are small nitpicks and for most use cases following the standard structure works

well, but for maximum simplicity I grew very fond of a system for pull mode Ansible we

used at CERN. An example structure for this system looks something like this:

Bash

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

With this system root playbooks are separated into directories with their own variables

and are not run from a single master playbook thus each play can run regardless of

whether there are errors in other playbooks. Each playbook only defines which roles to run

on the host group and nothing else, for example:

ansible.cfg # ansible configuration file

hosts # inventory file

bin/ # binaries

bootstrap.sh # script for setting up host for the first time

run-playbooks.sh # script for running relevant playbooks locally on

host

playbooks/ # "root" playbook directory

group_base/ # ""

main.yml # here we define roles for a particular group

group_vars/ # ""

all.yml # here we assign variables to a particular group

host_vars/ # ""

<hostname>.yml # here we assign variables to a particular host

host_<hostname>/ # here we define roles for a particular host

main.yml # define roles for a particular host

host_vars/ # ""

<hostname>.yml # here we assign variables to a particular host

function_test/ # ""

main.yml # ""

roles/ # roles directory

<role>/ # role name

defaults/ # ""

main.yml # <-- default lower priority variables for this

role

files/ # ""

file.txt # <-- files

template.txt.j2 # <-- files for use with the template resource

tasks/ # ""

main.yml # <-- tasks to run for the role

YAML

1

2

3

4

5

6

7

8

9

10

This and it's accompanying variables file make it simple to understand at a glance which

roles are run and where the group variables are defined since they are all together in one

directory.

For maximum simplicity for managing the playbooks and roles it should be enforced that

each host is only part of ONE group. This will ensure that it will always be immediately

obvious which playbooks are run for what host when looking at the inventory file.

- name: PLAYBOOK FOR GROUP 'GGG'

hosts: ggg

roles:

- { role: pre, tags: [pre], when: not (disabled_roles.pre | default(false))

}

- { role: rrr, tags: [rrr], when: not (disabled_roles.rrr | default(false))

}

- { role: post, tags: [post], when: not (disabled_roles.post |

default(false)) }

