
Ansible User's Guide to Saltstack

What Ansible and Saltstack have in common

Both tools support similar core features and serve the same use cases:

Are hybrid (imperative/declarative) configuration management for mutable

infrastructure

Use YAML and Jinja2 with similar syntax

How Ansible and Saltstack differ

Most differences stem from their differing architectures: while Ansible is agentless,

Saltstack follows the master-minion by default (but also supports master only, minion only

as well).

Initial setup

For Ansible nothing needs to be done on the bastion where playbooks will be run to

configure hosts. Once playbooks have been written all that needs to be done is to run the

playbooks.

For Saltstack the master needs to be installed and configured (default config may suffice).

After that the minion needs to be installed. When a Salt minion starts, by default it

searches for a master that resolves to the salt hostname on the network. If found, the

minion initiates the handshake and key authentication process with the Salt master.

Master can be configured to accept keys automatically or manually.

Executing commands

With Ansible a simple example command to check OS version of hosts looks like this:

Bash

1 ansible servers -m setup -i ansible_hosts -a

'filter=ansible_memfree_mb,ansible_memtotal_mb'

https://docs.saltproject.io/en/latest/ref/configuration/master.html
https://docs.saltproject.io/en/latest/ref/configuration/minion.html

For Saltstack the same would be:

Defining tasks for multiple sets of hosts

Ansible has the concept of playbooks where tasks are defined. The equivalent for Saltstack

are state formulas.

In Ansible, a play is a set (one or more) of tasks to execute on a hostgroup. A run is a set

of plays that are run. Ansible has some best practices on how to organize Ansible plays

and playbooks, however there does not exist a set structure. For comparisons sake I

assume the following (very common) structure: there is one run which runs multiple plays

on multiple hostgroups, each play defines a number of playbooks to run from roles.

For Saltstack there is the top file which is similar to an Ansible play as it describes a list

hostgroups and a list of formulas to run on the hostgroups.

A top file example:

The equivalent play for Ansible would be:

Writing tasks

Bash

1

2

'*' means that all minions will be targeted with the command

salt '*' status.meminfo

YAML

1

2

3

base: # Apply SLS files from the directory root for the 'base'

environment

'web*': # All minions with a minion_id that begins with 'web'

- apache # Apply the state file named 'apache.sls'

YAML

1

2

3

4

5

- name: PLAYBOOK FOR GROUP 'WEB'

hosts: web # All hosts in 'web' hostgroup

roles:

- role: apache # Apply the playbook from 'apache' role

https://docs.ansible.com/ansible/2.8/user_guide/playbooks_best_practices.html#content-organization
https://docs.saltproject.io/en/latest/ref/states/top.html#states-top

The tasks in the aforementioned apache role in Ansible would have the following

structure:

The roles/apache/tasks/main.yml aka the role playbook would look something like this:

For Saltstack the state formula for apache would have the following structure:

Text Only

1

2

3

4

5

6

7

8

9

10

11

12

roles/

 apache/ # this hierarchy represents a "role"

 tasks/ #

 main.yml # <-- tasks file can include smaller files if

warranted

 templates/ # <-- files for use with the template resource

 httpd.conf.j2 # <------- templates end in .j2

 files/ #

 bar.txt # <-- files for use with the copy resource

 vars/ #

 main.yml # <-- variables associated with this role

 defaults/ #

 main.yml # <-- default lower priority variables for this

role

YAML

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

- name: Install apache

ansible.builtin.package:

name:

- httpd

state: installed

- name: Template apache config

ansible.builtin.template:

src: httpd.conf.j2

dest: /etc/httpd/conf/httpd.conf

- name: Copy apache config

ansible.builtin.copy:

src: bar.txt

dest: /etc/httpd/conf/

Text Only

1

2

3

The init.sls aka the state formula would look something like this:

Worth noting that Salt also allows (and even encourages) to use templating in formulas

while Ansible does not allow templating in playbooks. For example we could add some

variables to the apache config task from before depending on the OS of the minion:

45
formulas/

 apache/

 init.sls

 httpd.conf.j2

 bar.txt

YAML

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

install apache:

pkg.installed:

- name: httpd

run apache service:

service.running:

- name: httpd

/etc/httpd/conf/httpd.conf:

file.managed:

- source: salt://apache/http.conf.j2

- user: root

- group: root

- mode: 644

- template: jinja

- defaults:

custom_var: "default value"

other_var: 123

/etc/httpd/conf/bar.txt:

file.managed:

- source: salt://apache/http.conf

- user: root

- group: root

- mode: 644

YAML

1

2

3

4

5

6

7

Managing variables

Ansible has many (22 in fact) different places for variables with a hierarchy of variable

precedence. In essence variables can be defined almost anywhere.

Saltstack has grains, variables that come from minions, and pillars, variables that go to

minions as well as variables defined in formulas. In that sense, managing variables

becomes a lot more explicit and readable when compared to Ansible.

Merging lists in Ansible:

Merging lists in Saltstack:

Event based tasks

8 91011121314
/etc/httpd/conf/httpd.conf:

file.managed:

- source: salt://apache/http.conf.j2

- user: root

- group: root

- mode: 644

- template: jinja

- defaults:

custom_var: "default value"

other_var: 123

{% if grains['os'] == 'Ubuntu' %}

- context:

custom_var: "override"

{% endif %}

YAML

1

2

3

4

5

6

- name: Install apache

ansible.builtin.package:

name:

- "{{ item }}"

state: installed

with_items: "{{ pkgs | combine(group_pkgs, list_merge='append_rp') }}"

YAML

1

2

3

install packages:

pkg.installed:

- name: {{ pillar['pkgs']['group_pkgs'] }}

https://docs.ansible.com/ansible/latest/playbook_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable

Ansible does not have event based tasks, however a developer preview exists for event

driven Ansible features

Saltstack has reactors, which can be used to run formulas when defined events occur. This

makes managing a dynamic set of hosts easy. For example master will run configuration

formulas when a minion wakes up from powersave:

Reusability of tasks

In Ansible it is possible to separate roles into separate repositories and include them in

playbooks by linking the repositories. It is also possible to separate multiple components

(like multiple roles) into Ansible collections and then to include them in playbooks. With

collections it is possible to specify which roles and components to include.

With Saltstack it is possible to separate formulas and include them in the master

configuration from the repository. It is possible to specify which formulas and paths to

include and where to place them.

Conclusion

Points against Ansible and for Salt

First, configuration management often turns into smart variable handling as your actual

configurations get more generic over time. Thus handling variables becomes really

important. Saltstack is more more explicit ways in which it handles variables: they're

defined in a pillar. Contrast this with the variable precedence for Ansible (there's a

hierarchy of 22 different variable locations). Usually with Ansible an admin will usually

only have to think about 4 different variable locations (command line, hostgroup, host and

role variables), but the requirement to always needing to consider and build playbooks

around variable precedence makes for less readable and harder to maintain repos.

Secondly, Saltstack uses master-agent architecture over Ansible's much much easier to get

started with agentless approach. However, as a result, it tends not to scale as well as

YAML

1

2

3

4

reactor: # Master config section "reactor"

- 'salt/minion/*/start': # Match tag "salt/minion/*/start"

- /srv/reactor/start.sls # Things to do when a minion starts

- /srv/reactor/monitor.sls # Other things to do

https://www.ansible.com/use-cases/event-driven-automation
https://www.ansible.com/use-cases/event-driven-automation
https://docs.saltproject.io/en/latest/topics/reactor/

Saltstack because you have to open an SSH connection to every machine you want to

manage. Saltstack, by contrast, uses ZeroMQ to communicate with minions: minions listen

for instructions on one ZeroMQ port on the master (4505) and post back results on another

(4506). It's blazing fast and it scales really well. Works even when SSH goes down or the

machines don't expose ssh (e.g. locked down machines that do not need SSH). Worth noting

that in terms of actually writing tasks for minions, they are very similar and both use YAML

and Jinja, so in that sense they are both as easy to onboard new people for writing new

tasks. The learning curve increase for Saltstack comes from the initial master-minion

setup, but even that is not a hugely complicated job all things considered.

Thirdly, master-agent architecture of Salt enables true event driven management with

reactors which is especially good for dynamic host inventories (with hosts that often

power on and off like gray nodes). So we could much easily define scenarios for minion

wakeups.

For notifications, Ansible has easier integration for sending emails however if we split the

runs (by hostgroup) then that means an email for each hostgroup. Aggregating errors will

become a problem that needs a custom script. For Salt aggregating results and more

granular control over notifications needs more work, but is a lot more flexible and does

not need custom scripts.

Points for Ansible and against Salt

The support for Ansible is a lot better, there are more people using it in both enterprise

and open source. Community is also a lot bigger. Having such a big user base behind them

gives Ansible much stable and reliable updates compared to Salt where looking at the best

practices even from 3 years ago differ from the ones recommended today.

Even if on paper SaltStack seems a lot better in many aspects on paper, in reality there are

quite a few worrying problems. Like the git filesystem. It is possible to use gitfs

alongside the default rootfs to automatically fetch Salt formulas, pillars etc from remote

git repos, however gitfs is unfortunately buggy and full of python version mismatch

errors among other things (Check the warnings in the gitfs documentation). Basic things

like version controlling config management should be reliable and it begs the question of

what else might be buggy in Salt.

Even variable handling gets messy when moving away from pillar only setups where you

have to merge pillars with defaults and use map files in formulas which one might have to

do to keep SaltStack performant when managing a large number of minions. Here's where

the Ansible variable precedence actually comes in handy, because you can just define

variables in the playbook and not have to worry about merging them.

https://docs.saltproject.io/en/latest/topics/tutorials/gitfs.html
https://github.com/saltstack/salt/issues?utf8=%E2%9C%93&q=is%3Aissue+is%3Aopen+gitfs
https://docs.saltproject.io/en/latest/topics/tutorials/gitfs.html
https://saidvandeklundert.net/2019-11-18-saltstack-pillar-data-and-map-files/

Further resources for Saltstack

Salt In 10 Minutes Walkthrough

Salt User Guide

Salt Documentation

SaltStack Configuration Management Best Practices

https://docs.saltproject.io/en/master/topics/tutorials/walkthrough.html
https://docs.saltproject.io/en/master/topics/tutorials/walkthrough.html
https://docs.saltproject.io/salt/user-guide/en/latest/
https://docs.saltproject.io/en/latest/contents.html
https://youtu.be/RbXnXZu_4ng

