
DevOps

General technical system administration and devops documentation.

Linux

General Linux tidbits.

Sudo and root

You may see sudo su - used instead of sudo -i but there are some subtle di�erences

between them. The sudo su - command sets up the root environment exactly like a

normal login because the su - command ignores the settings made by sudo and sets up

the environment from scratch. The default con�guration of the sudo -i command actually

sets up some details of the root user's environment di�erently than a normal login. For

example, it sets the PATH environment variable slightly di�erently. This a�ects where the

shell will look to �nd commands. You can make sudo -i behave more like su - by editing

/etc/sudoers with visudo . Find the line

and replace it with the following two lines:

For most purposes, this is not a major di�erence. However, for consistency of PATH

settings on systems with the default /etc/sudoers file , it must be considered.

SSH

Fix SSH permissions

Text Only

1 Defaults secure_path = /sbin:/bin:/usr/sbin:/usr/bin

Text Only

1

2

Defaults secure_path = /usr/local/bin:/usr/bin

Defaults>root secure_path = /usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin

Virtualization

Check nested virtualization support

Intel:

cat /sys/module/kvm_intel/parameters/nested

modinfo kvm_intel | grep -i nested

AMD:

cat /sys/module/kvm_amd/parameters/nested

modinfo kvm_amd | grep -i nested

Disk

Check if disk is SSD or HDD

Disk performance testing with FIO

Flexible I/O tester docs �o output explained ArsTechnica �o recommended tests

SINGLE 4KIB RANDOM WRITE PROCESS

This is a single process doing random 4K writes. This is where the pain really, really lives;

it's basically the worst possible thing you can ask a disk to do. Where this happens most

frequently in real life: copying home directories and dot�les, manipulating email stu�,

some database operations, source code trees.

Bash

1 find .ssh/ -type f -exec chmod 600 {} \;; find .ssh/ -type d -exec chmod 700

{} \;; find .ssh/ -type f -name "*.pub" -exec chmod 644 {} \;

Text Only

1 lsblk -d -o name,rota

Bash

1

https://fio.readthedocs.io/en/latest/fio_doc.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://tobert.github.io/post/2014-04-17-fio-output-explained.html
https://arstechnica.com/gadgets/2020/02/how-fast-are-your-disks-find-out-the-open-source-way-with-fio/

16 PARALLEL 64KIB RANDOM WRITE PROCESSES

This time, we're creating 16 separate 256MB �les (still totaling 4GB, when all put together)

and we're issuing 64KB blocksized random write operations. We're doing it with sixteen

separate processes running in parallel, and we're queuing up to 16 simultaneous

asynchronous ops before we pause and wait for the OS to start acknowledging their

receipt. This is a pretty decent approximation of a signi�cantly busy system. It's not doing

any one particularly nasty thing—like running a database engine or copying tons of dot�les

from a user's home directory—but it is coping with a bunch of applications doing

moderately demanding stu� all at once.

This is also a pretty good, slightly pessimistic approximation of a busy, multi-user system

like a NAS, which needs to handle multiple 1MB operations simultaneously for di�erent

users. If several people or processes are trying to read or write big �les (photos, movies,

whatever) at once, the OS tries to feed them all data simultaneously. This pretty quickly

devolves down to a pattern of multiple random small block access. So in addition to "busy

desktop with lots of apps," think "busy �leserver with several people actively using it."

SINGLE 1MIB RANDOM WRITE PROCESS

This is pretty close to the best-case scenario for a real-world system doing real-world

things. No, it's not quite as fast as a single, truly contiguous write... but the 1MiB blocksize

is large enough that it's quite close. Besides, if literally any other disk activity is requested

simultaneously with a contiguous write, the "contiguous" write devolves to this level of

performance pretty much instantly, so this is a much more realistic test of the upper end

of storage performance on a typical system.

You'll see some kooky �uctuations on SSDs when doing this test. This is largely due to the

SSD's �rmware having better luck or worse luck at any given time, when it's trying to

queue operations so that it can write across all physical media stripes cleanly at once.

Rust disks will tend to provide a much more consistent, though typically lower, throughput

across the run.

fio --filename=sdX --name=random-write --ioengine=posixaio --rw=randwrite --

bs=4k --size=4g --numjobs=1 --iodepth=1 --runtime=60 --time_based --end_fsync=1

Bash

1 fio --filename=sdX --name=random-write --ioengine=posixaio --rw=randwrite --

bs=64k --size=256m --numjobs=16 --iodepth=16 --runtime=60 --time_based --

end_fsync=1

You can also see SSD performance fall o� a cli� here if you exhaust an onboard write

cache—TLC and QLC drives tend to have small write cache areas made of much faster

MLC or SLC media. Once those get exhausted, the disk has to drop to writing directly to the

much slower TLC/QLC media where the data eventually lands. This is the major di�erence

between, for example, Samsung EVO and Pro SSDs—the EVOs have slow TLC media with a

fast MLC cache, where the Pros use the higher-performance, higher-longevity MLC media

throughout the entire SSD.

Bash

1 fio --filename=sdX --name=random-write --ioengine=posixaio --rw=randwrite --

bs=1m --size=16g --numjobs=1 --iodepth=1 --runtime=60 --time_based --

end_fsync=1

